Maximum principle for optimal control of sterilization of prepackaged food
نویسندگان
چکیده
In the food industry field, heat sterilization, as a routine sterilization approach, is widely adopted. During such a process, the prepackaged foods in cans or pouches are put into a autoclave which is filled with the hot water or steam used as the medium of the thermal process. People can, under some particular requirements, have the appropriate control of the sterilization process by adjusting the temperature of the medium. After a planned time, the heat process is stopped and the hot water or steam is cooled, which finish the sterilization. In the whole procedure, the aim is twofold. One is, to the utmost extent, to destroy the microorganisms which cause the food spoilage, while the other one is to keep the nutrient ingredients of foods in sterilization as much as possible. The contradicting intents make the sterilization process control difficult to build a sensitive balance between them. If we keep the time long enough and the heating temperature high enough, the harmful bacterium can be fully killed but at the same time it also damages the nutrient ingredients largely. This is not a satisfying result that we want to attain. On the contrary, if we, in a short time, heat the food at the low temperature, the nutrient ingredients of foods will be well saved but the effect of sterilization is rebated. This also violates the original intention of the sterilization. To overcome these difficulties and get the ideal sterilization effect, not only the chemical and food engineers and agriculture engineers but also applied mathematicians try to find a really effective control strategy. It should be remarked that the first reference dealing with the problem from a mathematical point of view is Bermúdez & Martı́nez (1994), where the 3D control problem is stated, an optimality
منابع مشابه
A Novel Successive Approximation Method for Solving a Class of Optimal Control Problems
This paper presents a successive approximation method (SAM) for solving a large class of optimal control problems. The proposed analytical-approximate method, successively solves the Two-Point Boundary Value Problem (TPBVP), obtained from the Pontryagin's Maximum Principle (PMP). The convergence of this method is proved and a control design algorithm with low computational complexity is present...
متن کاملThree-axis optimal control of satellite attitude based on Ponteryagin maximum principle
A long time ago, since the launch of the first artificial satellite in 1957, controling attitude of satellites has been considered by the designers and engineers of aerospace industry. Considering the importance of this issue various methods of control in response to this need have been presented and analyzed until now. In this paper, we propose and analyze a three-axis optimal control on the s...
متن کاملDynamic Load Carrying Capacity of Flexible Manipulators Using Finite Element Method and Pontryagin’s Minimum Principle
In this paper, finding Dynamic Load Carrying Capacity (DLCC) of flexible link manipulators in point to-point motion was formulated as an optimal control problem. The finite element method was employed for modelling and deriving the dynamic equations of the system. The study employed indirect solution of optimal control for system motion planning. Due to offline nature of the method, many diffic...
متن کاملOptimal Control of Hand, Foot and Mouth Disease Model using Variational Iteration Method
In this paper, the optimal control of transmission dynamics of hand, foot and mouth disease (HFMD), formulated by a compartmental deterministic SEIPR (Susceptible-Incubation (Exposed)- Infected - Post infection virus shedding - Recovered) model with vaccination and treatment as control parameters is considered. The objective function is based on the combination of minimizing the number of infec...
متن کاملPontryagin's Minimum Principle for Fuzzy Optimal Control Problems
The objective of this article is to derive the necessary optimality conditions, known as Pontryagin's minimum principle, for fuzzy optimal control problems based on the concepts of differentiability and integrability of a fuzzy mapping that may be parameterized by the left and right-hand functions of its $alpha$-level sets.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IMA J. Math. Control & Information
دوره 24 شماره
صفحات -
تاریخ انتشار 2007